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Introduction
The ventromedial hypothalamic nucleus (VMH), the nucleus
accumbens (NAcc) and the mediodorsal and ventrolateral prefrontal
(orbitofrontal) cortices (mdPFC and OBF, respectively), key struc-
tures of the forebrain limbic circuitry, are known to play important
roles in various mechanisms of the homeostatic regulation (Oomura,
1980; Swanson and Mogenson, 1981; Neafsey, 1990). In previous
studies, special chemoneurons, the so called ‘glucose-sensitive’ (GS)
and ‘glucose-receptor’ (GR) neural cells have been discovered in the
above regions, and these glucose-monitoring (GM) neurons, in addi-
tion to specifically change in activity in response to increase of the
extracellular glucose concentration, have also been shown to be
involved in various processes of the organization of feeding (Oomura
et al., 1964; Oomura, 1980; Karádi et al., 1995, 2002). Despite an
increasing amount of related data, however, very little is known yet
about simultaneous ‘endogenous’ and ‘exogenous’ gustatory chemo-
sensitivities of these GM cells.

To elucidate the involvement of GM units in an integrative
processing of complex chemical information, microelectrophysio-
logical as well as behavioral investigations have been performed.
Extracellular single neuron activity of the VMH, NAcc, mdPFC and
OBF was recorded during (i) microelectrophoretic administration of
D-glucose and other chemicals and (ii) gustatory stimulations as well.
Recently conducted behavioral–biochemical experiments provided
evidence for that the pancreatic β-cell destroying streptozotocin
(STZ) (Like and Rossini, 1976) specifically damages the GM
neurons if applied locally to these structures (Egyed et al., 2000;
Karádi et al., 2000). In our other line of present studies, taste reac-
tivity and taste associated learning ability were tested in STZ treated
or control rats.

Materials and methods
Adult Wistar rats and rhesus monkeys (Macaca mulatta) of both
sexes were used in these experiments. Tungsten wire multibarreled
glass microelectrodes were manufactured by ourselves. Other tech-
nical details, such as operations, recording, microelectrophoresis,
intraoral gustatory stimulations, etc. have already been described
elsewhere (Karádi et al., 1995).

The behavioral experiments included stereotaxic implantation of
bilateral guide cannulae [stainless steel (ss), diameter 0.6 mm] above
either of the targeted forebrain areas. After the full recovery of
animals, steady microinjections of STZ (0.0037 M) or physiologic
saline (0.15 M NaCl) via fine delivery cannulae (ss, diameter 0.3 mm)
were achieved in hand-held, awake rats by means of a microinfusion
pump (1 µl/min/side; 60 s waiting time after each administration).
Taste reactivity by the method of Grill and Norgren (1978) and

conditioned taste aversion (CTA) tests were performed one or two
weeks after the intracerebral microinjections.

The appropriate brain atlases—Pellegrino et al. (1979) for the rat
and Snider and Lee (1961) for the primate—were used for the
stereotaxic manipulations and the histological examinations.

Analyses of data (with computation of means, standard errors, F-
scores, Student’s t- and χ2-tests, ANOVA, paired comparisons) were
performed as required.

Results

Single neuron recording

Activity changes of >450 neurons were recorded in these studies.
Proportions of the GM cells varied from ∼10% (mdPFC, OBF) and
14% (NAcc) to 30% (VMH) of all units tested. Only the excitatory
type of cells (GR) was found in the VMH, whereas both types of GM
neurons were identified in the other three areas. GS and GR units of
the NAcc showed differential topographical organization, with the
former being predominant in the ‘shell’ and the latter prevailing in
the ‘core’ region.

A majority of the GM neurons in all the above forebrain struc-
tures also displayed responses to intraorally delivered taste stimuli.
Figure 1 demonstrates activity changes of an accumbens GM cell to
‘endogenous’ and ‘exogenous’ chemical stimuli as well.

Chemoneurons of these brain areas, in addition to be modulated
by glucose and gustatory stimuli, also changed in firing rate to
various other (e.g. catecholamines), microiontophoretically adminis-
tered chemicals.

Behavioral studies

A single bilateral STZ microinjection in these regions, in addition to
leading to metabolic disturbances, resulted in the development of
taste perception deficits. Alterations of taste reactivity were the most
pronounced in case of treatment of the OBF (see Figure 2) or VMH.
Characteristic taste aversion deficit was observed after STZ microin-
jection into the NAcc.

Discussion
The sense of taste plays multiple roles in feeding (Scott, 1992). Our
present and previous data (Karádi et al., 1995) demonstrate a close
overlapping of the endogenous and exogenous chemosensory
systems in the forebrain. In addition to their multiple endogenous
humoral input, gustatory signals also converge on GM neurons
whose hierarchically organized network system plays significant
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integrative roles in adaptive mechanisms of the central homeostatic
control.
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Figure 1 Firing rate changes of a GM neuron in the nucleus accumbens
of the rat. Upper traces: microelectrophoretic administration of glucose
elicited excitation–inhibition–excitation sequence of the cell. Lower traces
orange juice (OJ) gustatory stimulation (dotted line) induced phasic
facilitation of the same neuron. Thick horizontal bar, number, duration of
the microelectrophoretic application and ejection current intensity in nA
respectively.

Figure 2 Taste reactivity alterations induced by bilateral streptozotocin
microinjection into the orbitofrontal cortex of the rat. Arbitrarily evaluated
behavioral responses to pleasant (upper) and unpleasant taste stimuli
(lower) in streptozotocin treated (STZ, n = 8) versus control (CONTROL, n
= 8) rats. I, A, ingestive and aversive patterns, respectively. *#P < 0.05.
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